16,320 research outputs found

    Putative spin liquid in the triangle-based iridate Ba3_3IrTi2_2O9_9

    Full text link
    We report on thermodynamic, magnetization, and muon spin relaxation measurements of the strong spin-orbit coupled iridate Ba3_3IrTi2_2O9_9, which constitutes a new frustration motif made up a mixture of edge- and corner-sharing triangles. In spite of strong antiferromagnetic exchange interaction of the order of 100~K, we find no hint for long-range magnetic order down to 23 mK. The magnetic specific heat data unveil the TT-linear and -squared dependences at low temperatures below 1~K. At the respective temperatures, the zero-field muon spin relaxation features a persistent spin dynamics, indicative of unconventional low-energy excitations. A comparison to the 4d4d isostructural compound Ba3_3RuTi2_2O9_9 suggests that a concerted interplay of compass-like magnetic interactions and frustrated geometry promotes a dynamically fluctuating state in a triangle-based iridate.Comment: Physical Review B accepte

    Ion beam figuring with focused anode layer thruster

    Get PDF

    Production and optical properties of liquid scintillator for the JSNS2^{2} experiment

    Full text link
    The JSNS2^{2} (J-PARC Sterile Neutrino Search at J-PARC Spallation Neutron Source) experiment will search for neutrino oscillations over a 24 m short baseline at J-PARC. The JSNS2^{2} inner detector will be filled with 17 tons of gadolinium-loaded liquid scintillator (LS) with an additional 31 tons of unloaded LS in the intermediate γ\gamma-catcher and outer veto volumes. JSNS2^{2} has chosen Linear Alkyl Benzene (LAB) as an organic solvent because of its chemical properties. The unloaded LS was produced at a refurbished facility, originally used for scintillator production by the RENO experiment. JSNS2^{2} plans to use ISO tanks for the storage and transportation of the LS. In this paper, we describe the LS production, and present measurements of its optical properties and long term stability. Our measurements show that storing the LS in ISO tanks does not result in degradation of its optical properties.Comment: 7 pages, 4 figures

    Development of Auto Scaling Method for 3D Rock Fragmentation Measurement System

    Get PDF
    Fragmentation Distribution is one of the important aspects of mining operations as it affects productivities on the majority of Mine-to-Mill operations. Nevertheless the significance of fragmentation management, the mining industry has relied on 2D image based fragmentation measurement system which poses many downsides. To overcome the drawbacks of current 2D fragmentation measurement system, 3D Rock Fragmentation Measurement System has been proposed with using 3D photogrammetry technologies. One of the common difficulty of fragmentation measurement system is scaling of the object, which is an essential component to secure the accuracy of particle size distribution. In this study, the actual scales and size information of objects have been obtained by measuring the acceleration when moving between the photographing points and giving the information of the distance obtained from the acceleration. The developed system would be equipped with the 3D Rock Fragmentation Measurement System

    Charge states and magnetic ordering in LaMnO3/SrTiO3 superlattices

    Full text link
    We investigated the magnetic and optical properties of [(LaMnO3)n/(SrTiO3)8]20 (n = 1, 2, and 8) superlattices grown by pulsed laser deposition. We found a weak ferromagnetic and semiconducting state developed in all superlattices. An analysis of the optical conductivity showed that the LaMnO3 layers in the superlattices were slightly doped. The amount of doping was almost identical regardless of the LaMnO3 layer thickness up to eight unit cells, suggesting that the effect is not limited to the interface. On the other hand, the magnetic ordering became less stable as the LaMnO3 layer thickness decreased, probably due to a dimensional effect.Comment: 17 pages including 4 figures, accepted for publication in Phys. Rev.
    corecore